On the Stability and the Bonding Model of $n \rightarrow \sigma^*$ Type Molecular Complexes, R₂Z-X-X: Proposal of 3c-4e Description for Z-X-X in the Adducts

Warô Nakanishi,*,[†] Satoko Hayashi,[†] and Hiroshi Kihara[‡]

Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan, and Department of Natural Sciences, Hyogo University of Teacher Education, 942-1 Shimokume, Yashiro-cho, Hyogo 673-1494, Japan

Received June 23, 1998

The stability of the $Z^{-1}X^{-2}X$ bonds in $R_2Z^{-1}X^{-2}X$ molecular complexes (MC) was examined for $O(CH_2CH_2)_2Se-I-X$, PhMeSe-I-X (X = Cl, Br), and Se(C₆H₄)₂Se-Br-Br. The MC adducts were shown to be comparably stable or more stable than the corresponding trigonal bipyramidal adducts (TB) which equilibrate with the MC in some cases. To clarify the reason for the stability of the MC, the model adducts of $H_2Z^1X^2X$ (MC and TB) (Z = O, S, Se and X = Cl, Br), together with the related species (H_2Z , X_2 , H_2ZX^+ , and H_2ZX_{\bullet}), were optimized with the 6-311++G(3df,2pd) basis sets at the MP2 and/or B3LYP levels. Calculations were also performed with different distances between ¹Cl and ²Cl ($r(^{1}Cl,^{2}Cl)$) in H₂S⁻¹Cl⁻²Cl (MC) and $r(S,^{2}Cl)$ in H₂S¹Cl²Cl (TB), where $r = r_{0}$ + 0.1m Å (r_0 : the optimized distance and m = -1, (0), 1, 2, and 3). A charge transfer (CT) occurs from S to ${}^{2}Cl$ in the S ${}^{-1}Cl{}^{-2}Cl$ bond of the MC as $r({}^{1}Cl,{}^{2}Cl)$ becomes larger, assuming a singlet multiplicity in the calculations. The situation is equal to that of ${}^{1}Cl-S-{}^{2}Cl$ in the TB, for which CT occurs from ¹Cl to ²Cl. A 3c-4e description of the $Z^{-1}X^{-2}X$ bond in $R_2Z^{-1}X^{-2}X$ (MC) is proposed based on the ab initio MO calculations by exhibiting the $10^{-1}X-2$ character, the N-X-L cording system for hypervalent bonds proposed by Martin, for $R_2Z^{-1}X^{-2}X$ (MC) practically. Bond orders for typical TB and MC were calculated from literature data according to Pauling's equation. The bond orders agree with the proposed 3c-4e model for the MC.

Introduction

The concept of molecular compounds or molecular complexes (MC) has been developed for a loose reversible association of the original molecules in a well-defined ratio, mostly 1:1. Mulliken has proposed a theory for MC based on quantum mechanics.¹ The driving force for the association is a charge transfer (CT) where electrons move from electron donors to acceptors in the complexes. On the other hand, a theory for complexes with trigonal bipyramidal structure has been proposed by Pimentel and Musher.^{2a} Such trigonal bipyramidal adducts (TB) contain hypervalent three-center-four-electron bonds (3c-4e) composed of linear $\sigma(p)$ orbitals. The 3c-4e description of the X-Z-X bond in TB, such as halogen adducts of chalcogenides (R₂ZX₂ (TB)), was further developed by the preparation and characterization of variety of new compounds with TB structure³ and by

D. J. Am. Chem. Soc. **1969**, 91, 5749. (b) Klayman, D. L.; Günther, W. H. H. Organic Selenium Compounds: Their Chemistry and Biology Wiley: New York, 1973; Chapter XV. (c) Perkins, C. W.; Martin, J. Č.; Arduengo, A. J.; Lau, W.; Alegria, A.; Kochi, J. K. *J. Am. Chem. Soc.* **1980**, *102*, 7753. (d) Hayes, R. A.; Martin, J. C. Sulfvane Chemistry in Organic Sulfur Chemistry: Theoretical and Experimental Advances, Bernardi, F., Csizmadia, I. G., Mangini, A., Eds.; Elsevier: Amsterdam, 1985. See also refs cited therein.

Scheme 1. Bonding Models for R₂ZX₂ (MC): (a) 3c-4e versus (b) $n \rightarrow \sigma^*$ Descriptions

theoretical calculations.² Thus the character of the X-Z-X bond in TB is easily understood by the 3c-4e description of this bond.^{2,3} However, the character of the Z-X-X bond in R_2Z-X-X (MC) cannot be so easily imagined by a weak $n \rightarrow \sigma^*$ CT description in some cases. The 3c-4e model is an attractive description for the Z-X-X bond in R_2Z-X-X (MC) (Scheme 1).

The R_2Z-X-X (MC) are stabilized by CT from n(Z) to $\sigma^*(X-X)$ orbitals of the components. The linear alignment of the three atoms, Z-X-X, must be superior to the bent structure for the CT. If the magnitude of the CT is small, the adduct will be an MC with a longer X-X bond. If the magnitude of the CT becomes large enough, the halogen can no longer exist as a halogen molecule, which leads to the formation of a TB with a hypervalent 3c-4e bond.^{3,4} The adduct should be a TB if the electronegativity⁵ of X

^{*} Corresponding author. Tel: +81-734-57-8252, fax: +81-734-57-8253 or 57-8272, e-mail: nakanisi@sys.wakayama-u.ac.jp. Wakayama University.

¹Hyogo University of Teacher Education. (1) Mulliken, R. S. *J. Am. Chem. Soc.* **1950**, *72*, 600. Mulliken, R. (1) Multin, M. Soc. 1952, 74, 811.
 (2) (a) Pimentel, G. C. J. Chem. Phys. 1951, 19, 446. Musher, J. I.

Angew. Chem., Int. Ed. Engl. 1969, 8, 54. (b) Chen, M. M. L.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1647. (c) Cahill, P. A.; Dykstra, C. E.; Martin, J. C. J. Am. Chem. Soc. 1985, 107, 6359.
 (3) (a) Baenziger, M. C.; Buckles, R. E.; Maner, R. J.; Simpson, T.

 (χ_X) is larger than that of Z (χ_Z) in R₂ZX₂, and an MC if χ_X is not larger than χ_Z (general rule).^{3a,4a,4b} On the basis of this rule, the structure of bromine adducts of selenides is expected to be a TB, but the difference of the electronegativity between Br and Se is small, which in some cases can lead to an equilibrium between TB and MC (eq 1).

Recently, the MC structure became popular in addition to the TB structure and/or ionic ones, since X-ray crystallographic studies increased the number of examples with an MC structure in the solid state, such as Ph₃P-X-X' $(X-X' = Br_2, I_2, and IBr).^6$ We encountered the formation of a mixture of a chlorine adduct (TB) and an iodine adduct (MC) of 1-selena-4-oxane when iodine monochloride is allowed to react with the selenide in solutions. The structure of the iodine monochloride adduct of 1-selena-4-oxane has been demonstrated to be O(CH₂-CH₂)₂Se–I–Cl by X-ray crystallographic analysis (see eqs 2 and 3).⁷ The MC structure of selenanthrene with bromine was established in solutions (cf: eq 4).^{4b} An equilibrium between MC and TB was also reported for ArAr'Se·Br₂.⁸ These findings show that the stability of MC and TB must be comparable in some cases, which means that the stability of the Z-X-X bond in the MC should be comparable to the stability of the X-Z-X bond in the TB in such a case.

Martin and co-workers redefined the bonding scheme for hypervalent species with a 3c-4e bond based on detailed ab initio MO calculations performed for the trifluoride ion.^{2c} The unique characteristic of all hypervalent molecules is redefined as follows: (1) the presence of at least one occupied high-energy molecular orbital which is *s* rather than *p* in symmetry with respect to a central atom to ligand bond and (2) which has virtually no overlap with the valence orbitals on a central atom.^{2c} The trifluoride ion is a typical TB with the typical 3c-4e bond. However, the definition (2) would be difficult to apply for hypervalent molecules with unsymmetrical 3c-4e bonds, as they appear in an MC.

A general systematic classification scheme has been proposed, which is practically useful for molecules with electron-rich multicenter (hypervalent) bonding.^{3c,d} The

Table 1. ¹³C NMR Chemical Shifts of O(²CH₂¹CH₂)₂Se·XY^a

		•			
XY	$\delta(^{1}C)$	$\delta(^{2}C)$	XY	$\delta(^{1}C)$	δ(² C)
null ^b	17.2	69.5	null ^b	17.2	69.5
ICl ^c	31.3	-7.1	Cl_2^c	31.2	-7.2
	3.5	-1.7	$\mathbf{Br_2}^c$	28.1	-6.6
IBr^{c}	27.9	-6.1	$I_2{}^c$	3.1	-1.4
	0.8	-0.9			

^a In CDCl₃. ^b From TMS. ^c From the parent selenide.

N-X-L cording system starts from a resonance structure that has only single bonds to X, and it designates the bonding around an atom X in terms of the number of valence shell electrons N formally associated directly with X and ligands L directly bonded to it. The R₂ZX₂ (TB) adduct and the trifluoride ion are classified as the 10-Z-4 and 10-F-2 species, respectively. The bonding scheme of $R_2Z^{-1}X^{-2}X$ (MC) is formally represented as 10⁻¹X⁻². The atoms X in R_2ZX_2 (TB), ²X in $R_2Z^{-1}X^{-2}X$ (MC), and Z in R_2ZX_2 (MC) are formally classified as 8-X-1, 8- 2X -1, and 8-Z-3, respectively. We would like to represent the situation as follows: $R_2Z^{-1}X^{-2}X$ (MC) is an MC for Z, but the central ¹X is recognized as a TB. Correspondingly, R_2ZX_2 (TB) is a TB for Z, but for X it can be viewed as an MC. This consideration led us to the working hypothesis that the bonding scheme in $R_2Z^{-1}X^{-2}X$ (MC) can be described by the 3c-4e hypervalent model, if the 10-1X-2 character is proven for $R_2Z^{-1}X^{-2}X$ (MC).

Much attention has been paid to the bonding and the nonbonded interactions between heteroatoms containing 2c-2e,9 2c-3e,9 3c-4e,10 4c-6e,11 and other bonds.12 Ab initio MO calculations were recently performed on H₂O-X- X'^{13} and $H_3N-X-X'^{14}$ (X-X' = F₂, Cl₂, and Cl-F), which also encouraged us to further investigate the character of the $Z-X-\bar{X}$ bond in MC. Here we would like to present the results of our recent investigations, which confirmed our working hypothesis of a 3c-4e description of the bonding in some $n \rightarrow \sigma^*$ type R₂Z–X–X (MC) systems.

Results and Discussion

Stability of MC versus TB in RR'SeXY. The ¹³C NMR spectra were measured for 1-selena-4-oxane (1) in chloroform-d with and without addition of iodine monochloride, iodine monobromide, chlorine, bromine, or iodine (eq 2). Table 1 shows the results. The ¹H, ¹³C, and ⁷⁷Se NMR chemical shifts (δ (¹H), δ (¹³C), and δ (⁷⁷Se), respectively) were also measured for selenoanisole (2) in the presence or absence of the halogens and interhalogens (eq 3). Table 2 collects the results, which include the half widths ($\nu_{1/2}$) and the integrals of the methyl

(14) Røeggen, I.; Dahl, T. J. Am. Chem. Soc. 1992, 114, 511.

^{(4) (}a) Nakanishi, W.; Hayashi, S.; Tukada, H.; Iwamura, H. J. Phys. Org. Chem. 1990, 3, 358. (b) Nakanishi, W.; Yamamoto, Y.; Hayashi, S.; Tukada, H.; Iwamura, H. *J. Phys. Org. Chem.* **1990**, *3*, 369. (c) Nakanishi, W.; Hayashi, S.; Nakamura, Y.; Iwamura, H. *Chem. Lett.* **1992**, 735; Nakanishi, W.; Sakamoto, K.; Isaka, K.; Hayashi, S. Phosphorus, Sulfur, Silicon 1992, 67, 79.

⁽⁵⁾ The electronegativity proposed by Allred-Rochow was employed to discuss the structure of the adducts. See, Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 264. Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 269.

^{(6) (}a) Bricklebank, N.; Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. J. Chem. Soc., Chem. Commun. **1992**, 355. (b) Godfrey, S. M.; Kelly, D. G.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G.; Watson, S. M. *J. Chem. Soc., Chem. Commun.* **1991**, 1163. (c) Bricklebank, N.; Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G. J. Chem. Soc., Dalton Trans. 1993, 2261. See also, Bricklebank, N.; Chem. Soc., Dation Trans. 1995, 2201. See also, Bricklebank, N.;
 Godfrey, S. M.; Mackie, A. G.; McAuliffe, C. A.; R. G.; Pritchard,
 Kobryn, P. J. J. Chem. Soc., Dalton Trans. 1993, 101.
 (7) Knobler, C.; McCullough, J. D. Inorg. Chem. 1968, 7, 365.
 (8) Nakanishi, W.; Hayashi, S. Chem. Lett. 1995, 75.

^{(9) (}a) Asmus, K.-D. Acc. Chem. Res. 1979, 12, 436. Musker, W. K. Acc. Chem. Res. 1980, 13, 200. (b) Fujihara, H.; Furukawa, N. J. Mol. Struct. (THEOCHEM) 1989, 186, 261.

⁽¹⁰⁾ Yamamoto, Y.; Chen, X.; Kojima, S.; Ohdoi, K.; Kitano, M.; Doi, Y.; Akiba, K.-y. J. Am. Chem. Soc. **1995**, 117, 3922. Fujihara, H.; Mima, H.; Erata, T.; Furukawa, N. J. Am. Chem. Soc. **1993**, 115, 9826. Fujihara, H.; Chiu, J.-J.; Furukawa, N. J. Am. Chem. Soc. **1988**, 110, 1280.

⁽¹¹⁾ Nakanishi, W.; Hayashi, S.; Toyota, S. J. Chem. Soc., Chem. Commun. 1996, 371. Alvarez, S.; Mota, F.; Novoa, J. J. Am. Chem. Soc. 1987, 109, 6586.

⁽¹²⁾ Dixon, D. A.; Arduengo, A. J., III. Inorg. Chem. 1990, 29, 970. Blake, A. J.; Lippolis, V.; Parsons, S.; Schröder, M. J. Chem. Soc., Chem. Commun. 1996, 2207. Cotton, F. A.; Kibala, P. A. J. Am. Chem. Soc. 1987, 109, 3308.

⁽¹³⁾ Dahl, T.; Røeggen, I. J. Am. Chem. Soc. 1996, 118, 4152. The calculated r(O-Cl) distance of H₂O-Cl-Cl (MC) was reported to be 0.15 Å longer than that observed in a chlorine adduct of dioxane.¹⁹

 Table 2.
 ¹H, ¹³C, and ⁷⁷Se NMR Chemical Shifts of the MeSe Groups in 2·XY^a

XY	$\delta(^{1}\text{H})$	$\Delta \nu_{1/2}{}^b$	$content^c$	$\delta(^{13}\text{C})$	$\Delta \nu_{1/2}{}^b$	δ (77Se)	$\Delta v_{1/2}^{b}$
\mathbf{null}^d	2.35	1.0	1.00	7.2	1.0	206.9	4.0
ICl ^e	1.55	8.8	0.42	39	f	286.0	16.6
	0.38	11.4	0.58	8	f	53.3	25.1
IBr^{e}	0.61	2.0	1.00	11.8	5.5	77	f
$\mathrm{Cl}_2{}^e$	1.56	1.0	1.00	38.7	1.0	285.0	4.9
$\mathrm{Br}_{2}{}^{e}$	1.55	1.0	1.00	36.5	1.0	227.1	4.9
I_2^e	0.33	1.0	1.00	5.6	3.3	44.9	7.7

^{*a*} In CDCl₃. ^{*b*} In hertz. ^{*c*} Relative integrals of the signal(s). ^{*d*} From TMS for $\delta({}^{1}\text{H})$ and $\delta({}^{13}\text{C})$ and from MeSeMe for $\delta({}^{77}\text{Se})$. ^{*e*} From the parent selenide. ^{*f*} Very broad.

Table 3. ¹H NMR Chemical Shifts of 3 and 4 with and without Bromine, Together with Their Mixtures^a

	3		4
condition	$\overline{\delta({}^{1}\mathrm{H}(o))}$	$\delta({}^{1}\mathrm{H}(o))$	δ(¹ H(2))
3 ^b	7.700		
$3 + \mathrm{Br_2}^c$	0.124		
4 ^b		7.616	7.337
$4 + \mathrm{Br}_{2}{}^{c}$		0.392	0.788
$4 + 2 \mathrm{Br}_2{}^c$		0.392	0.788
$4 + 3Br_2^{c}$		0.393	0.788
$3 + 4 + \mathrm{Br}_2^c$	0.079	0.141	0.283
$2 \cdot 3 + 4 + \mathrm{Br}_2^c$	0.051	0.075	0.150

^a In CDCl₃. ^b From TMS. ^c From the parent selenide.

proton signals. Table 3 exhibits selected δ ⁽¹H) values of selenanthrene (**3**) and *p*-nitrophenyl phenyl selenide (**4**), together with those of the mixtures with bromine (eq 4).

$$2 \quad \bigcirc Se - I - X \xrightarrow{X = CI, Br} \qquad \bigcirc Se - I - I \qquad (2)$$

$$1 \cdot IX \qquad 1 \cdot X_2 \qquad 1 \cdot I_2$$

$$2 \xrightarrow{Ph} Se - I - X \xrightarrow{X = CI, Br} Ph \xrightarrow{Y} Ph \xrightarrow{Ph} Ph \xrightarrow{Ph} Se - I - I \qquad (3)$$

$$Me' \xrightarrow{X} Me' X$$

$$2 \cdot IX \qquad 2 \cdot X_2 \qquad 2 \cdot I_2$$

The formation of the 1:1 mixture of $1 \cdot \text{Cl}_2$ (TB) and $1 \cdot \text{I}_2$ (MC) from $1 \cdot \text{ICl}$ (MC) in the solution is demonstrated by the $\delta(^{13}\text{C})$ values (Table 1). Such a mixture was not observed in the solid state. In solution, the bonding energy of the hypervalent Cl-Se-Cl bond (and of the $n \rightarrow \sigma^*$ type Se-I-I bond) must be larger than two equivalents of the $n \rightarrow \sigma^*$ type Se-I-Cl bond. On the other hand, an equilibrium between $1 \cdot \text{Br}_2$ and $1 \cdot \text{Ig}$ and $1 \cdot \text{Ig}$ is indicated by the $\delta(^{13}\text{C})$ values for the $1 \cdot \text{IBr}$ solution. To clarify this point, the NMR chemical shifts of the adducts with selenoanisole (**2**) were examined.

The $\delta({}^{1}\text{H})$, $\delta({}^{13}\text{C})$, and $\delta({}^{77}\text{Se})$ values of **2**·ICl shown in Table 2 consist of two sets of chemical shifts similar to the case of **1**·ICl. The chemical shifts for one set were

the same as those of $2 \cdot \text{Cl}_2$ and those for the second set were slightly different from those of $2 \cdot \text{I}_2$. The molar fraction of $2 \cdot \text{Cl}_2$ in the $2 \cdot \text{ICl}$ solution was estimated to be 0.42 based on the integral of the methyl protons, which yields fractions of 0.42 and 0.16 for $2 \cdot \text{I}_2$ and $2 \cdot \text{ICl}$, respectively, although the MC adducts were in equilibrium with the components. The larger $\nu_{1/2}$ values for the latter set are consistent with the presence of the equilibrium.

Only one set of signals was observed for **2**·IBr. It must be due to a relatively fast equilibrium between the adducts. The $\delta({}^{1}\text{H})$, $\delta({}^{13}\text{C})$, and $\delta({}^{77}\text{Se})$ values of MeSe group in **2**·IBr were much smaller than those of the average of **2**·Br₂ and **2**·I₂. The molar fraction of **2**·Br₂ was estimated to be ca. 0.2 assuming that the chemical shifts of **2**·IBr are equal to those of **2**·I₂. The fractions of **2**·I₂ and **2**·IBr were estimated to be about 0.2 and 0.6, respectively. These results show that the stability of **2**·ICl is comparable to that of **2**·Cl₂ and that the two equimolar **2**·IBr are more stable than the mixture of **2**·Br₂ and **2**·I₂. The stability of the n→ σ^* type Se–I–X (X = Cl, Br) bonds suggested to be comparable to that of the hypervalent 3c-4e X–Se–X (X = Cl, Br) bonds.¹⁵

The stability of the MC adduct of $3 \cdot Br_2$ relative to that of the TB adduct of $4 \cdot Br_2$ was examined by analyzing the $\delta(^{1}H)$ values of 3, 4, their bromine adducts, and the mixtures. Table 3 shows the results.¹⁵ The molar ratios of 3, $3 \cdot Br_2$, 4, and $4 \cdot Br_2$ were calculated to be 0.36, 0.64, 0.64, and 0.36, respectively, when one equimolar amount of 3 was added to a solution of $4 \cdot Br_2$ in chloroform-*d*. The *K* value ($K = [3 \cdot Br_2][4]/[3][4 \cdot Br_2]$) of eq 4 was estimated to be 3.2. The ratios became 1.18, 0.82, 0.81, and 0.19, respectively, when an additional 1 equiv of 3 was added to the solution (K = 3.0). These results clearly show that $3 \cdot Br_2$ (MC) is more stable than $4 \cdot Br_2$ (TB), which in turn exhibits that the $n \rightarrow \sigma^*$ type Se–Br–Br bond in the former must be more stable than the 3c-4e hypervalent Br–Se–Br bond in the latter.

We wondered why some Se–X–Y bonds in the MC were more stable than those expected from the $n \rightarrow \sigma^*$ type CT model. The $n \rightarrow \sigma^*$ type Se–X–X bonds in the MC were therefore examined on the basis of ab initio MO calculations.

Molecular Orbital Calculations for H₂ZX₂. Ab initio MO calculations were performed on the TB and MC adducts (H₂ZX₂) using Gaussian 94 program,¹⁶ together with the related species (H₂Z, X₂, H₂ZX⁺, and H₂ZX•¹⁷). The optimized TB and MC structures are indicated by H₂ZX₂ (TB) and H₂ZX₂ (MC) (sometimes H₂ZXX (TB) and H₂ZX-X-X (MC)), respectively. Table 4 shows the results of calculations on H₂ZX₂ (TB) and H₂ZX₂ (TB) and H₂ZX₂ (MC), where (Z,X) = (O,Cl), (S,Cl), and (S,Br), with the 6-311+G(d,p), 6-311+G(2d,p), and 6-311++G(3df,2pd) basis sets at the MP2 and/or DFT (B3LYP) levels.¹⁸ The Z-X-X bonds in MC were calculated to be almost linear, which is in

⁽¹⁵⁾ Further investigations were carried out on the selenides with and without the halogens (and/or interhalogens) in various ratios. Details will be reported elsewhere.

⁽¹⁶⁾ Gaussian ⁹4, Revision D.4; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995.

Table 4. Results of ab Initio MO Calculations for H₂ZX_n with Various Basis Sets at MP2 and/or DFT (B3LYP) Levels

	energy (E) (au)	r(Z–H) (Å)	r(Z–X) (Å)	r(X–X) (Å)	\angle HZH (deg)	\angle HZX (deg)	$\angle ZXX^a$ (deg)
H ₂ O-Cl-Cl (MC)							
MP2/6-311++G(3df,2pd)	-995.6872	0.9596	2.7380	1.9946	104.31	112.96	180.06
B3LYP/6-311++G(3df,2pd)	-996.8936	0.9619	2.7098	2.0279	105.31	104.70	180.90
H ₂ SCl ₂ (TB)							
MP2/6-311+G(d,p)	-1318.0824	1.3308	2.2907		96.14	86.76	170.29
MP2/6-311+G(2d,p)	-1318.1655	1.3305	2.2673		96.17	87.06	171.19
MP2/6-311++G(3df,2pd)	-1318.2683	1.3304	2.2313		96.39	87.00	171.01
B3LYP/6-311++G(3df,2pd)	-1319.8662	1.3382	2.2763		95.65	87.19	171.63
H ₂ S-Cl-Cl (MC)							
MP2/6-311+G(d,p)	-1318.0925	1.3338	3.3151	2.0333	92.25	110.70	176.80
MP2/6-311+G(2d,p)	-1318.1580	1.3337	3.1304	2.0450	92.88	97.41	179.62
MP2/6-311++G(3df,2pd)	-1318.2623	1.3331	3.1053	2.0011	92.19	93.94	180.69
B3LYP/6-311++G(3df,2pd)	-1319.8593	1.3424	2.9650	2.0551	92.57	93.04	180.47
$H_2S-Br-Br(MC)$							
MP2/6-311++G(3df,2pd)	-5543.9692	1.3336	3.1456	2.3027	92.27	92.59	181.03
B3LYP/6-311++G(3df,2pd)	-5547.7293	1.3427	3.0332	2.3607	92.61	93.51	180.71

^{*a*} \angle ClSCl for TB.

Table 5. Results of ab Initio MO Calculations for H_2SX_n (X = Cl, Br) with 6-311++G(3df,2pd) Basis Sets at the MP2 Level

	H_2S	$H_2S^1Cl^{\bullet a}$	$H_2S^1Cl^+$	H ₂ SCl ₂ (TB)	H ₂ S ¹ Cl ² Cl (MC)	$H_2S^1Br^{\bullet b}$	$H_2S^1Br^+$	H ₂ SBr ₂ (TB)	H ₂ S ¹ Br ² Br (MC)
E (au)	-398.8986	-858.5500	-858.2595	-1318.2683	-1318.2623	-2971.4031	-2971.1101	-5543.9556	-5543.9692
r(S-H) (Å)	1.3324	1.3332	1.3496	1.3304	1.3331	1.3339	1.3487	1.3320	1.3336
$r(S^{-1}X)$ (Å)		2.5540	1.9719	2.2313	3.1053	2.7991	2.1522	2.4232	3.1456
$r(^{1}X - ^{2}X)$ (Å)					2.0011				2.3027
∠HSH (deg)	92.15	92.66	93.37	96.39	92.19	92.42	93.35	95.23	92.27
$\angle HS^{1}X$ (deg)		88.48	100.03	87.00	93.94	89.38	99.66	87.19	92.59
$\angle S^1 X^2 X$ (deg)				171.01 ^c	180.69			171.66 ^c	181.03
Qn(S)	-0.2158	0.0336	0.6110	0.6296	-0.1988	-0.0645	0.4687	0.5055	-0.1881
Qn(H)	0.1079	0.1240	0.1798	0.1494	0.1136	0.1226	0.1852	0.1577	0.1162
$Qn(H_2S)$		0.2815	0.9706	0.9283	0.0284	0.1807	0.8390	0.8208	0.0443
$Qn(^1X)$		-0.2815	0.0294	-0.4642	0.0080	-0.1807	0.1610	-0.4104	0.0110
$Qn(^{2}X)$				-0.4642	-0.0364			-0.4104	-0.0553

^{*a*} Spin densities: S(S) 0.3174, S(H) -0.0142, S(¹Cl) 0.7110. ^{*b*} Spin densities: S(S) 0.2035, S(H) -0.0102, S(¹Br) 0.8168. ^{*c*} \angle ¹XS²X for TB.

accordance with the observations. The TB adduct of H_2SCl_2 was found to be more stable than the MC when 6-311+G(2d,p) and 6-311++G(3df,2pd) basis sets at the MP2 level and 6-311++G(3df,2pd) basis sets at the B3LYP level were applied. However, the application of the 6-311+G(d,p) basis sets at the MP2 level lead to the prediction that the TB is less stable than the MC, which is not in accordance with the experimental findings on diorganyl sulfide dichlorides.^{3a,d}

Z = O, S, Se and X = Cl, Br

The optimized r(O-Cl) and r(Cl-Cl) values in H₂O-Cl-Cl (MC) were 2.738 and 1.995 Å, respectively, with the 6-311++G(3df,2pd) basis sets at the MP2 level and 2.710 and 2.028 Å, respectively, with the same basis sets at the B3LYP level.¹³ The calculated values reproduce the bond lengths observed for O(CH₂CH₂)₂OCl₂ (2.67 and 2.02 Å, respectively),¹⁹ fairly well. The (r(S-Br), r(Br-Br)) distances in H₂S-Br-Br (MC) were calculated to be (3.146, 2.303 Å) and (3.033, 2.361 Å) at the MP2 and the B3LYP levels, respectively, applying the 6-311++G-(3df,2pd) basis sets. The observed values for a 1:2 adduct of 1,2,4,5-tetrakis(ethylthio)benzene with bromine are (2.81, 2.41 Å).²⁰ The calculated r(S-Br) and r(Br-Br)distances are 0.22–0.34 Å longer and 0.11–0.05 Å shorter than the observed ones, respectively. The observed values for (CH₂)₄S-Br-Br are (2.321, 2.724 Å).²¹ The differences between the observed and calculated values are very large in this case. This discrepancy must be due to the ionic nature of (CH₂)₄S-Br-Br (such as (CH₂)₄S⁺-Br- - -Br⁻) in the solid state. The calculated r(S,¹Br) in H₂S¹Br⁺ is 2.152 Å (see Table 5), which is slightly shorter than the observed value in (CH₂)₄S-Br-Br.

After the comparison of the observed structure of some MC with that calculated for some models, calculations on H_2ZX_2 (TB) and H_2ZX_2 (MC) were performed in more detail for Z = S, Se and X = Cl, Br, together with the related species (H_2Z , X_2 , H_2ZX^+ , and H_2ZX_{\bullet}), applying the 6-311++G(3df,2pd) basis sets at the MP2 level. Tables 5 and 6 exhibit the energies (*E*), optimized structures, and natural charges (*Qn*), obtained from a natural population analysis,²² for the sulfur and the selenium

⁽¹⁷⁾ Calculations for radical species see, (a) Kobayashi, T.; Matsuzawa, H.; Iwata, S. *Bull. Chem. Soc. Jpn.* **1994**, *67*, 3172. (b) Takane, S.; Fueno, T. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 3633.

⁽¹⁸⁾ Ab initio MO calculations, that take into account electron correlation by using MP2 and DFT (B3LYP) methods, predicted much shorter distances between S and Cl (r(S–Cl)) for H₂S–Cl–Cl (MC), relative to the HF level, which reflects the complex interaction between S and Cl atoms in the MC. The r(S–Cl) for H₂S–Cl–Cl (MC) with the 6-311++G(3df, 2pd) basis sets at the HF level was predicted to be 3.7538 Å, for example.

 ⁽¹⁹⁾ Hassel, O.; Stroømme, K. O. Acta Chem. Scand. 1959, 13, 1775.
 (20) Bock, H.; Havlas, Z.; Rauschenbach, A.; Näther, C.; Kleine, M. Chem. Commun. 1996, 1529.

⁽²¹⁾ Allegra, G.; Wilson, G. E., Jr.; Benedetti, E.; Pedone, C.; Allbert, R. J. Am. Chem. Soc. **1970**, *92*, 4002.

⁽²²⁾ NBO Ver. 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.

Table 6. Results of ab Initio MO Calculations for H_2SeX_n (X = Cl, Br) with 6-311++G(3df,2pd) Basis Sets at the
MP2 Level

	H ₂ Se	$H_2Se^1Cl^{\bullet a}$	$H_2Se^1Cl^+$	H ₂ SeCl ₂ (TB)	$H_2Se^1Cl^2Cl$ (MC)	$H_2Se^1Br^{\bullet b}$	$H_2Se^1Br^+$	H ₂ SeBr ₂ (TB)	$H_2Se^1Br^2Br$ (MC)
E (au)	-2401.1385	-2860.7964	-2860.5145	-3320.5261	-3320.5023	-4973.6472	-4973.3643	-7546.2113	-7546.2094
r(Se-H) (Å)	1.4591	1.4595	1.4758	1.4580	1.4598	1.4601	1.4749	1.4592	1.4603
$r(Se^{-1}X)$ (Å)		2.5956	2.1049	2.3337	3.1784	2.8139	2.2744	2.5159	3.1908
$r(^{1}X - ^{2}X)$ (Å)					2.0052				2.3102
∠HSeH (deg)	91.27	91.91	92.10	95.16	91.30	91.63	92.02	94.24	91.36
\angle HSe ¹ X (deg)		88.01	97.65	86.51	92.10	89.21	97.52	86.79	92.56
$\angle Se^1X^2X$ (deg)				169.65 ^c	180.80			170.56 ^c	180.65
Qn(Se)	-0.1072	0.2366	0.8296	0.8483	-0.0843	0.1280	0.6849	0.7185	-0.0666
Qn(H)	0.0536	0.0691	0.1219	0.0927	0.0594	0.0693	0.1271	0.1008	0.0627
$Qn(H_2Se)$		0.3748	1.0733	1.0338	0.0588	0.2666	0.9390	0.9200	0.0587
$Qn(^1X)$		-0.3748	-0.0733	-0.5169	0.0042	-0.2666	0.0610	-0.4600	0.0048
$Qn(^2X)$				-0.5169	-0.0388			-0.4600	-0.0635

^{*a*} Spin densities: S(Se) 0.4563, S(H) -0.0268, S(¹Cl) 0.5973. ^{*b*} Spin densities: S(Se) 0.3219, S(H) -0.0241, S(¹Br) 0.7263. ^{*c*} \angle ¹ClSe²Cl for TB.

compounds. The TB adducts were found to be more stable than the corresponding MC for H_2SCl_2 , H_2SeCl_2 , and H_2SeBr_2 , whereas H_2SBr_2 (TB) was calculated to be less stable than H_2SBr_2 (MC), which was in accordance with the observations. The energy difference between H_2SeBr_2 (TB) and H_2SeBr_2 (MC) was only 0.0019 au (5.0 kJ mol⁻¹), which indicated the possible existence of an equilibrium between TB and MC in ArAr'Se·Br_2.

Large positive and negative charges were predicted on the central and the terminal atoms of the TB adducts, which are well explained by the 3c-4e model for the bond.³ On the other hand, the predicted Qn values on Z (and H₂Z), ¹X, and ²X in H₂Z⁻¹X⁻²X (MC) were negative, positive, and negative, respectively. The development of a positive charge on the central atom ¹X in the MC, as well as the negative charge predicted on the terminal atom ²X, are in agreement with the 3c-4e model of the $Z^{-1}X^{-2}X$ bond. The development of negative charge on the terminal atom, Z, also seems to agree with that model. But one has to be careful. The charge on Z of H₂Z-X-X (MC) has to be compared with that of free H₂Z, since the MC is formed by the reaction of H_2Z with X_2 . The Qnvalues on Z in H_2Z-X-X (MC) (Z = S, Se and X = Cl, Br) were predicted to be slightly more positive than those on the corresponding atoms of H₂Z. The magnitude of the positive charge at the Z atoms as well as the H_2Z components were larger for X = Br than for X = Cl in the MC,²³ irrespective of the electronegativity⁵ of the elements.

Let us compare the charges on Z in H_2ZX_2 (MC) with those of the atoms in H_2ZX^+ , which corresponds to the charge transfer in the reaction of H₂ZX⁺ with X⁻ to form H_2Z-X-X (MC). The most typical example is found for (Z,X) = (Se,Cl). The charges at Se and ¹Cl in H₂Se¹Cl⁺ were 0.830 and -0.073, respectively. They became -0.084 and 0.004 in $H_2Se^{-1}Cl^{-2}Cl$ (MC), after reaction with ²Cl⁻. The positive charge development at ¹Cl in the MC is interesting. The negative charge at ²Cl⁻ decreases to -0.039 in H₂Se $-^{1}$ Cl $-^{2}$ Cl (MC): the negative charge does not accumulate on ¹Cl, but is transferred to Se in H₂Se-¹Cl⁻²Cl (MC). A negative charge of ca. 0.96 passes through ¹Cl to Se or H₂Se. Some negative charge also moves from ¹Cl to Se or H₂Se during this process. Similar amounts of CT are also predicted for other MC adducts where the charge at ¹X in $H_2Z^1X^+$ is determined by the relative electronegativity of X and Z. A similar picture

for the character of the CT is obtained if one considers the formation of H_2Z-X-X (MC) from $H_2Z^1X\bullet$ and $^2X\bullet$ (see Tables 5 and 6).

The above results are well explained by assuming that the $Z^{-1}X^{-2}X$ bonds in $H_2Z^{-1}X^{-2}X$ (MC) (Z = S, Se and X = Cl, Br) can be discussed by a 3c-4e model. The slightly less negative charge predicted on Z of H₂Z-X-X (MC), relative to that of H_2Z , is also explained by the 3c-4e hypervalent character of the $Z^{-1}X^{-2}X$ bonds, since the formation of the bonds is connected with an unavoidable CT from H_2Z to X_2 in the initial stage of the MC formation. The two electrons in one of the lone pair orbitals of Z extend over the $\sigma^{*}({}^{1}X-{}^{2}X)$ orbital of the newly formed 3c-4e Z-1X-2X bond. The expected development of negative charge on Z in the formation of H₂Z-X-X (MC) is canceled by the CT from Z to X_2 in the initial stage of the interaction. The 3c-4e character of the Z–X–X bond in the MC was further examined through the investigation of some distance dependences.

Characters of CT in the Formation of H₂**SCl**₂ **(TB and MC).** Ab initio MO calculations were performed on H₂S¹Cl²Cl (TB) and H₂S⁻¹Cl⁻²Cl (MC) with different $r(S^{-2}Cl)$ and $r({}^{1}Cl^{-2}Cl)$ values: $r(S^{-2}Cl) = r_{0}(S^{-2}Cl) + 0.1m$ Å and $r({}^{1}Cl^{-2}Cl) = r_{0}({}^{1}Cl^{-2}Cl) + 0.1m$ Å, where $r_{0}(S^{-2}Cl)$ and $r_{0}({}^{1}Cl^{-2}Cl)$ are the optimized values for the TB and MC and m = -1, (0), 1, 2, 3.

$$H_2S^1Cl^2Cl (TB) \to H_2S^1Cl^+ + {}^2Cl^-$$
 (5)

$$H_2S^{-1}Cl^{-2}Cl (MC) \rightarrow H_2S^{1}Cl^{+} + {}^{2}Cl^{-}$$
 (6)

From these calculations we obtain the character of the CT for the initial stage of the dissociation processes for the TB and MC, which corresponds to eqs 5 and 6, respectively. The process will produce $H_2S^1Cl^+$ and $^2Cl^-$, if it is assumed that the singlet multiplicity is conserved during the reaction. Figures 1 and 2 show the plots of Qn versus the bond lengths in the TB and MC, together with those for $H_2S^1Cl^+$ and $^2Cl^-$ (A). As seen from Figure 1, the Qn values of 1Cl and 2Cl in $H_2S^1Cl^2Cl$ (TB) are increased and decreased, respectively, whereas the values for S, H, and H_2S change only little with increasing $r(S-^2Cl)$. The main result in the case of the TB is a CT from 1Cl to $^2Cl.^{24}$

In the case of the MC (Figure 2), the Qn values of S and H₂S in H₂S⁻¹Cl⁻²Cl (MC) increase with increasing $r(^{1}Cl^{-2}Cl)$. The Qn value of ²Cl decreases and that of ¹Cl is almost unchanged. The ionic species, H₂S¹Cl⁺ and ²Cl⁻, are again produced at the end of this process if it is

⁽²³⁾ The reason must be very complex. The character of CT in the 3c-4e bond seems to be more typical for X = Cl than for X = Br. Further investigations are necessary as the predicted charges also depend on the optimized structures (see also Figure 2).

Figure 1. Plots of Qn in H₂S¹Cl²Cl (TB) against $r(S^{-2}Cl)$, together with those for H₂S¹Cl⁺ and ²Cl⁻ (A); $r_0(S^{-2}Cl) = 2.231$ Å; \oplus stands for Qn(S), \bigcirc for $Qn(H_2S)$, \triangle for Qn(H), \Box for $Qn(^1Cl)$, and \boxplus for $Qn(^2Cl)$.

Figure 2. Plots of Qn in $H_2S^{-1}Cl^{-2}Cl$ (MC) against $r({}^{1}Cl^{-2}Cl)$, together with those for $H_2S^{1}Cl^{+}$ and ${}^{2}Cl^{-}$ (A); $r_0({}^{1}Cl^{-2}Cl)$ = 2.001 Å; \oplus stands for Qn(S), \bigcirc for $Qn(H_2S)$, \triangle for Qn(H), \Box for $Qn({}^{1}Cl)$, and \boxplus for $Qn({}^{2}Cl)$.

assumed that the singlet multiplicity is conserved during the reaction. The results demonstrate that the $S^{-1}Cl^{-2}Cl$ bond in $H_2S^{-1}Cl^{-2}Cl$ (MC) can be indeed analyzed by the 3c-4e model. The CT must be examined not by the nature of elements but by their positions (Scheme 2). The character of the CT in $H_2Se^{-1}Br^{-2}Br$ (MC) was found to be essentially the same as the one discussed for $H_2S^{-1}Cl^{-2}Cl$ (MC).

Molecular Orbitals Constructing the 3c-4e Bond of Z-X-X in MC. Molecular orbitals were calculated for H₂SeBr₂ (MC) with the 3-21G^(*) basis sets of the MacSpartan program,²⁵ using the structure optimized with the 6-311++G(3df,2pd) basis sets at the B3LYP level. The

Figure 3. Energy diagram in the formation of the 3c-4e bond $(\psi_1, \psi_1', \psi_2, \text{ and } \psi_3)$ in H₂SeBr₂ (MC) from the n(p_z) and ψ_a of H₂Se and the σ and σ^* of Br₂.

Scheme 2. Characters of CT in the Heterolytic Dissociation of H₂SCl₂ (a) for TB and (b) for MC

overlap between the $\sigma^*(Br-Br)$ and the $n(p_z)$ of H₂Se decreases dramatically as r(Se,Br) becomes larger, which affects significantly the shapes of ψ_2 and ψ_3 . Since the shortest *r*(Se,Br) value was predicted at the B3LYP level (Table 4), this structure was employed to depict the orbitals, although the real value might be even shorter than the predicted one. Figure 3 shows the energy diagram for the formation of H_2SeBr_2 (MC), together with the molecular orbitals ψ_1 , ψ_1' , ψ_2 , and ψ_3 in H₂SeBr₂ (MC), the n(p_z) and ψ_a of H₂Se, and the σ and σ^* of Br₂. The orbitals ψ_1 , ψ_2 , and ψ_3 , result mainly from the n(p_z) of H_2Se and the σ and σ^* of Br_2 while the contribution from ψ_a is large in ψ_1 '. The orbitals ψ_2 and ψ_3 of H₂SeBr₂ (MC) are HOMO and LUMO which again supports the 3c-4e interpretation of the Se-Br-Br bond, according to the redefinition proposed by Martin et al.²⁰

Bond Orders for Z–X–X in MC and for X–Z–X in TB. The 3c-4e character of the bonding in the investigated MC was further examined by calculating bond orders from observed bond lengths of TB and MC adducts using Pauling's equation²⁶ (eq 7). D(*n*) and D(1) represent the bond distances where the bond orders are n (<1) and 1, respectively. Table 7 shows the results. The bond orders between the adjacent atoms in the 3c-4e bond are expected to be in the order of 0.5 because the ψ_2 orbital is usually nonbonding. The Z–X–X bond is well

⁽²⁴⁾ The (*Qn*(C), *Qn*(H), *Qn*(Cl)) values for CH₃Cl and CH₂Cl₂ were calculated to be (-0.4538, 0.1816, -0.0910) and (-0.3093, 0.1890, -0.0344), respectively, with the MP2/6-311++G(3df, 2pd) method. The values for CH₃⁺ and CH₂Cl⁺ were calculated to be (0.4205, 0.1932, no Cl atom) and (0.1644, 0.2283, 0.3792), respectively, based on the same method. The (*Qn*(C), *Qn*(H), *Qn*(¹Cl), *Qn*(²Cl)) values were found to be (-0.2747, 0.1901, -0.0207, -0.0846) for CH₂¹Cl²Cl, if the calculations were performed with a C⁻²Cl bond length 0.1 Å longer than the optimized value. The calculated CT mainly occurs from C to Cl, if the dissociation proceeds from CH₂XCl to CH₂X⁺ (X = H or Cl) and Cl⁻. In this case the character of CT corresponds to the 2c-2e model.

⁽²⁵⁾ Hehre, H. J. MacSpartan Plus Ver. 1.0; Wavefunction, Inc., 18401 Von Karman, Suite 370, Irvine, CA 92612.

^{(26) (}a) Pauling, L. J. Am. Chem. Soc. **1947**, 69, 542. (b) Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, New York, 1960; Chapter 7.

Table 7. Bond Lengths and Bond Orders in Some TB and MC^a

Tuble 7. Dona Lengths and Dona Orders in Some 1D and Mo										
compound	TB/MC	∠XZX (deg)/ ∠ZXX' (deg)	r(Z–X) (Å)/ r(X–X') (Å)	$\sum r_{ m co}$ (Å)/ $\sum r_{ m co}$ (Å)	$r_{ m obs} - \Sigma r_{ m co}$ (Å)/ $r_{ m obs} - \Sigma r_{ m co}$ (Å)	п	ref			
F ₂ SF ₂	TB	186.9	1 646	1.68	-0.034	1 14	h			
$(CF_2)_{2}SF_2$	TB	186 1	1 681	1.68	0.001	1.00	ĉ			
$(Me_3N)_3SF_3$	TB	174 7	1 770	1.68	0.09	0.71	d			
$(4-C C_2H_4)_2SC _2$	TB	174.5	2 2 5 9	2.03	0.00	0.42	ρ			
(1 0108114)20012	ID	171.0	2 3 2 3	2.03	0.203	0.32 (av 0.37)	t			
PhaSeCla	TB	180	2 30	2.00	0.14	0.52 (0.07)	f			
(4-MeCoHa) SeClo	TB	177 5	2 38	2.16	0.22	0.43	d I			
S(CH ₂ CH ₂) ₂ SeBr ₂	TB	184.9	2 547	2 31	0.237	0.10	h^{B}			
PhaSeBra	TB	180	2 52	2 31	0.207	0.45	f			
$(1 - M_{0}C_{0}H_{1})_{0}$ SeBro	TB	177	2 55	2 31	0.24	0.45	r a			
MosToCls	TB	179 //	2 188	2 36	0.128	0.40	5 i			
Mezreelz	ID	176.11	2 5 4 1	2.30	0.120	0.01 0.50 (av 0.56)	1			
PhaToBra	TB	178	2.541	2.50	0.172	0.50 (av 0.50)	÷			
$(A_{\rm C})C_{\rm C}H_{\rm c})_{\rm c}T_{\rm e}I_{\rm c}$	TB	173 5	2.002	2.51	0.172	0.12	J k			
(4-0106114)21012	ID	175.5	2 9 47	2 70	0.247	0.30 (30.011)	л			
1.2.C.H.(CH.).ToI.	TB	176 53	2.347	2.70	0.247	0.35 (av 0.41)	k			
1,2-06114(0112)21012	ID	170.55	2.000	2.70	0.200	0.40 0.42 (av 0.44)	л			
C.H.O.Cl.	MC		2.520	2.70	1.02	0.42 (av 0.44)	1			
0411802012	IVIC	178	2.07	1.05	1.02	0.02	1			
C H O Pr	MC	170	2.02	1.90	0.04	0.00	m			
C4114O2B12	IVIC	180	2.71	2.00	0.91	0.03	111			
ArFtSBr.	MC	100	2.51	2.20	0.63	0.00	n			
ALEGDIZ	IVIC	m	2.01	2.10	0.03	0.03	11			
(CH _a).SBra	MC	111	2.41	2.20	0.13	0.58	0			
(C112)45D12	IVIC	189	2 791	2.10	0.141	0.38	0			
IS(CH-CH-)SI	MC	102	2.724	2.20	0.444	0.15	n			
125(C112C112)2512	IVIC	177 0	2 787	266	0.437	0.15	p			
(PhCHa) SI	MC	177.3	2.707	2.00	0.127	0.01	a			
(1110112)2512	WIC	170	2 810	266	0.150	0.51	9			
BrIS(CH_CH_)_SIBr	MC	173	2.013	2.00	0.155	0.34	r			
BH3(CH2CH2)251BI	IVIC	178 9	2.007	2.31	0.317	0.50	1			
(CH) Sol	MC	170.2	2.040	2.47	0.170	0.37	c			
$(C11_2)_4Se1_2$	IVIC	1906	2.102	2.50	0.202	0.37	3			
O(CH_CH_) Sol	MC	100.0	2.314	2.00	0.254	0.38	+			
0(01120112)23012	IVIC	195 9	2.135	2.50	0.233	0.38	L			
LSo(CU.CU.).Sol	MC	105.2	2.300	2.00	0.230	0.32				
1256(C112C112)25612	IVIC	190.0	2 870	2.50	0.329	0.28	u			
O(CH.CH.) SolCl	MC	100.0	2.070	2.00	0.21	0.45				
0(01120112)258101	IVIC	1919	2.03	2.30	0.13	0.01	V			
Mo NI	MC	104.2	2.73	2.32	0.41	0.21				
WIe31N12	IVIC	170	6.61	2.03	0.24	0.40	W			
MaNICI	MC	179	2.03 2.20	2.00 2.02	0.17	0.52	•			
wie31NICI	NIC	190	2.30	2.03	0.27	0.30	Х			
Dh.DI.	MC	100	2.J2 9 101	2.32 9.19	0.20	0.40	• •			
F 113F 12	IVIC	170 99	2.401 2.161	2.43 2.66	0.031	0.02	У			
		110.22	3.101	2.00	0.501	0.13				

^a Italic number shows data around the X−X′ bond in MC. ^b Reference 28. ^c Reference 29. ^d Reference 30. ^e Reference 3a. ^f Reference 34. ^j Reference 35. ^k Reference 36. ^l Reference 19. ^m Reference 37. ⁿ Reference 20: ∠SBrBr being not given. ^o Reference 21. ^p Reference 38. ^q Reference 39. ^r Reference 40. ^s Reference 41. ^t Reference 42. ^u Reference 43. ^v Reference 7. ^w Reference 45. ^y Reference 6b.

described by the 3c-4e model if the two bond orders in Z-X-X are close to each other.

$$D(n) = D(1) - 0.60 \log n \tag{7}$$

Before we discuss the bond orders of Z-X-X in the MC, we first deal with those in the TB. The bond orders between S and F (n(S,F))²⁷ in R₂SF₂ (TB)²⁸⁻³⁰ were found to be 1.14–0.71, depending on the electronegativity of the equatorial ligands. The value of n(S,Cl) for (4-ClC₆H₄)₂SCl₂^{3a} is 0.37 on the average. The n(Se,X) values for R₂SeX₂ (X = Cl, Br)^{31–33} are in the range 0.58–0.40 and n(Te,X) for R₂TeX₂ (X = Cl, Br, I)^{34–36} lie between

0.61 and 0.39. The two bond orders for the essentially symmetric X-Z-X group differ up to 0.1, which is attributed to the crystal packing effect.

The *n*(O,X) and *n*(X,X) values in O(CH₂CH₂)₂OX₂ (X = Cl,¹⁹ Br³⁷) are in the ranges 0.02–0.03 and 0.86–0.89, respectively. The *n*(S,I) values of sulfide diiodides^{38,39} lie between 0.15 and 0.21, and their *n*(I,I)) values between 0.54 and 0.61 and the (*n*(S,I), *n*(I,Br)) for BrIS(CH₂CH₂)₂-SIBr⁴⁰ is (0.30, 0.51). The values for *n*(Se,I) and *n*(I,I)) of

- (38) Chao, G. Y.; McCullough, J. D. Acta Crystallogr. 1960, 13, 727.
- (39) Rømming, C. Acta Chem. Scand. 1960, 14, 2145.

⁽²⁷⁾ Although some r(S-F) values for R_2SF_2 are not larger than the sum of covalent radii of S and F, eq 7 is applied to evaluate the bond orders.

⁽²⁸⁾ Stone, R. G.; Tigelaar, H. L.; Flygare, W. H. J. Chem. Phys. **1970**, *53*, 3947.

⁽²⁹⁾ Oberhammer, H.; Kumar, R. C.; Knerr, G. D.; Shreeve, J. M. Inorg. Chem. **1981**, 20, 3871.

⁽³⁰⁾ Cowley, A. H.; Riley, P. E.; Szobota, J. S.; Walker, M. L. J. Am. Chem. Soc. **1979**, 101, 5620.

⁽³¹⁾ McCullough, J. D.; Hamburger, G. J. Am. Chem. Soc. **1942**, 64, 508. McCullough, J. D.; Hamburger, G. J. Am. Chem. Soc. **1941**, 63, 803.

 ⁽³²⁾ McCullough, J. D.; Marsh, R. E. Acta Crystallogr. 1950, 3, 41.
 (33) Battelle, L.; Knobler, C.; McCullough, J. D. Inorg. Chem. 1967, 6, 958.

 ⁽³⁴⁾ Ziolo, R. F.; Troup, J. M. J. Am. Chem. Soc. 1983, 105, 229.
 (35) Christofferson, G. D.; McCullough, J. D. Acta Crystallogr. 1958,

^{11, 239.} (36) Chao, G. Y.; McCullough, J. D. Acta Crystallogr. **1962**, 15, 887;

Knobler, C.; Ziolo, R. F. J. Organomet. Chem. 1979, 178, 423.
 (37) Hassel, O.; Hvoslef, J. Acta Chem. Scand. 1954, 8, 873.

selenide diiodides⁴¹⁻⁴³ are in the ranges 0.28-0.38 and 0.37-0.45, respectively. The bond orders for the selenide diiodides are in the same range as for other TB adducts of selenides and tellurides, and the n(Se,I) and n(I,I)values are close with each other. Therefore, the selenide diiodides are well described by the 3c-4e model. The bonds in sulfide diiodides have to be described by a somewhat unsymmetric 3c-4e model, due to the substantially smaller n(S,I) values compared to those of n(I,I). The S-I-Br bond in BrIS(CH₂CH₂)₂SIBr is understood in a similar way. The chlorine and bromine adducts of the ether are but described by the weak $n \rightarrow \sigma^*$ CT model. Nevertheless, we prefer to describe the O- - -X-X bonds by the unsymmetrical 3c-4e model, too.

The S-Br-Br bonds in 1,2,4,5-tetrakis(ethylthio)benzene tetrabromide²⁰ and in (CH₂)₄SBr₂²¹ are also described as the unsymmetrical 3c-4e model, with an ionic character of S⁺-Br- - -Br⁻ for the latter. The Se-I-Cl bonds in O(CH₂CH₂)₂SeICl⁷ and the P-I-I bond in Ph₃PI₂^{6b} can also be viewed the unsymmetrical 3c-4e bonds with a stronger Z⁻¹X bond. The N-I-I bond in Me₃NI₂⁴⁴ and the N–I–Cl bond in Me₃NICl⁴⁵ are typical 3c-4e bonds judging from the calculated bond orders.

Conclusion

It is proposed that the Z-X-X bond in R_2Z-X-X (MC), such as halogen adducts of selenides or sulfides, can be described by the 3c-4e model. The 3c-4e description of the Z-X-X bonds in MC makes it easier to understand the character of the bonding in these systems by comparison with the X-Z-X bonds in TB, which are extensively investigated and well characterized so far. The comparison is achieved by changing the central atom Z in X-Z-X with the terminal atom X in Z-X-X, although the electronegativity of Z and X must be carefully taken into account.

Experimental Section

Chemicals were used without further purification unless otherwise noted. Solvents were purified by standard methods.

(40) Knobler, C.; Baker, C.; Hope, H.; McCullough, J. D. Inorg.

Boiling points were uncorrected. ¹H, ¹³C, and ⁷⁷Se NMR spectra were measured at 400, 100, and 76 MHz, respectively. The ¹H, ¹³C, and ⁷⁷Se chemical shifts are given in ppm relative to those of internal CHCl₃ slightly contaminated in the solution (or TMS), CDCl₃ as the solvent, and external MeSeMe, respectively. Column chromatography was performed on silica gel (Fujidebison BW-300). Acidic alumina and basic alumina (E. Merck) were also used on silica gel, if necessary.

1-Selena-4-oxane (1) was prepared according to the literature.^{7,46} The crude product after usual workup was distilled to give 1 in 55% yield as a colorless oil, bp 167.5-168.0 °C. lit.46 bp 167.5-168.5 °C. 1H NMR (CDCl₃, 400 MHz) 2.55-2.80 (m, 4H), 3.92-4.17 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) 17.18, 69.54.

Iodine monochloride was prepared by distillation under reduced pressure after stirring the mixture of iodine and chlorine. It gave 72% yield as a black oil, bp 98.0-99.5 °C. lit.47 bp 94.7-102 °C. Iodine monobromide was used as the equimolar mixture of bromine and iodine in carbon tetrachloride

MO Calculations. Ab initio MO calculations were performed on a Power Challenge L computer with the Gaussian 94 program.¹⁶ The 6-311++G(3df,2pd) basis sets at the MP2 level were mainly applied on the TB and MC structures of H_2ZX_2 , H_2Z , and H_2ZX^+ (Z = S, Se and X = Cl, Br) and the UMP2 formalism with the 6-311++G(3df,2pd) basis sets was used for the corresponding radicals, H₂ZX•,¹⁷ supposing doublet spin multiplicity. Calculations were also carried out for H₂O-Cl-Cl (MC), H₂SCl₂ (TB and MC), and H₂S-Br-Br (MC) using various basis sets with or without application of MP2 and/or DFT (B3LYP) methods. The molecular orbitals shown in Figure 3 were obtained with the MacSpartan program²⁵ and the 3-21G^(*) basis sets using the optimized geometry from the B3LYP/6-311++G(3df,2pd) calculations.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Scientific Research (No. 09640635) (W.N.) and that on Priority Areas (No. 10133234) (W.N.) from Ministry of Education, Science, Sports and Culture, Japan.

Supporting Information Available: The character of CT in $H_2 \bar{S}^{\bar{1}}Cl^2Cl$ (TB and MC) in the dissociation to $H_2S^1Cl_{\bullet}$ and ²Cl•. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9812227

⁽⁴⁰⁾ Knobler, C., Baker, C., Hope, H., McCunludgi, J. D. *Hong. Chem.* **1971**, *10*, 697.
(41) Hope, H.; McCullough, J. D. *Acta Crystallogr.* **1964**, *17*, 712.
(42) Maddox, H.; McCullough, J. D. *Inorg. Chem.* **1966**, *5*, 522.
(43) Chao, G. Y.; McCullough, J. D. *Acta Crystallogr.* **1961**, *14*, 940.
(44) Strømme, K. O. *Acta Chem. Scand.* **1959**, *13*, 268.
(45) Horendo D. Hurgel H. Arte Chem. Scand. **1959**, *13*, 268.

⁽⁴⁵⁾ Hassel, O.; Hope, H. Acta Chem. Scand. 1960, 14, 391.

⁽⁴⁶⁾ Gibson, C. S.; Johnson, J. D. A. J. Chem. Soc. 1931, 266. (47) Buckles, R. E.; Bader, J. M. Inorg. Syntheses 1967, 9, 130.